おもしろい記事をインターネットで見かけました。ある小学2年生の男の子が、お母さんにたずねたのだそうです。
「どうして、掛け算には、『が』がつくものと、つかないものがあるの?」
1×1=1 いんいち『が』いち
2×2=4 ににん『が』し
など、『が』がつくものと、
3×8=24 さんぱにじゅうし
9×9=81 くくはちじゅういち
などのように、『が』がつかないものと、たしかに二通りありますね。お母さんは答えられませんでした。ぼくも答えられません。ところが、その男の子はしばらく考えて、ひらめいたのです。
「答えが10より小さいときには『が』がついている!」
おお、たしかにそうですね! すごい!
九九を作ったのはだれなのでしょう? その人が、言いやすくするためにした工夫なのでしょうか? しかし、その子はよく気が付きましたね!
まず、なぜ『が』がつくのだろう、という疑問をもったこと。とりあえず、九九を覚えようとしないで、考えてみたのがすばらしいですね。そして、ま、いいか(と、大人=ぼくは思ってしまいそうですが)とならず、自分でその理由を考えてみたこと。この二つが、本当にすばらしいです。
NEWSは、子どもたちの疑問、質問に、真正面からぶつかっていく場でありたいと思います。答えはでないかもしれませんが、それでも、あきらめずに、いっしょに考える大人でありたいと思います。